REVIEW

Pharmaceutical and industrial protein engineering: Where we are?

Amro Abd-Al-Fattah Amara

Protein Research Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications/Microbiology Division, Pharmaceutics Department, College of Pharmacy at King Saud University (KSU) Riyadh, Kingdom of Saudi Arabia

Abstract: The huge amount of information, the big number of scientists and their efforts, labs, man/hrs, fund, companies all and others factors build the success of the amazing new branch of genetic engineering the *'Protein Engineering'* (PE). It concerns with the modification of protein structure/function(s) or building protein from scratch. The engineered proteins usually have new criteria(s). Engineering proteins can be mediated on the level of genes or proteins. PE fined its way in different important sectors including industrial, pharmaceutical and medicinal <u>ones</u>. Aspects about PE and its applications will be discussed with this review. The concept, tools, and the industrial applications of the protein, engineered proteins and PE will be under focus. In order to get up to date Knowledge about the applications of PE in basic protein and molecular biology, several examples are discussed. PE can play a significant role in different industrial and pharmaceutical sectors if used wisely and selectively.

Keywords: Protein engineering; applications; rational design; directed evolution.

Protein

Proteins are macromolecules, which participate in every process of different cells. Protein name derived from the Greek word *protos*, meaning "first" or "foremost". The Swedish chemist Jöns Jakob Berzelius was the first to describe protein as a term in 1838. James B. Sumner (1926) showed that urease is a protein. Changing protein composition is a natural phenomenon, e.g., Sickle cell anaemia and Cystic fibrosis (Harris, 1992; Platt and Falcone, 1988). Post-translation modification, which can happen either before the protein is used in the cell, or as a part of control mechanisms is a natural mechanism for modifying protein structure (Caraglial *et al.*, 2004).

Proteins work together to achieve a particular function, and they often associate to form stable complexes (Anthea, 1993). Insulin was the first protein to be sequenced, by Frederick Sanger, who won the Nobel Prize for this achievement in 1958. He has succeeded in solving the insulin sequence using protein amino acids sequencing rather than using the insulin related genes. It was a complicated process especially in the presence of disulfide bonds between A and B fragments. However, Sanger and Thampson (1953a,b) have identified the importance of the insulin 3D structure. The first threedimensional (3D) structures for hemoglobin and myoglobin have been resolved by Muirhead and Perutz (1963) and Kendrew et al., (1958 a,b) respectively. The 3D structures of both proteins were determined by x-ray diffraction analysis. On the basis of their pioneering work,

they were both awarded Nobel Prize in Chemistry in 1962.

Rapid advances in the related fields (including DNA isolation and purifications, cloning, sub-cloning, sequencing, site-directed mutagenesis, gene synthesis, new expression systems in prokaryotic and eukaryotic cells) have provided the molecular biologist additional tools for modifying existing proteins to improve their catalytic activities, stability, and selectivity. Different results and information about protein structure/function(s) have been used by different researcher to improve their design. Protein structure/function(s) knowledge has been found its applications in different fields including food industry, enzymes, pharmaceutical products, protein folding applications, targeted drugs, nanomedicine, hormones (insulin), growth factors, protein crystallization, antibody-antigen docking etc. (Goodenough 1995; Runbingh 1997; Arulmuthu et al., 2009; Crisman and Randolph 2009; Debbage, 2009; Huang et al., 2009; Sivasubramanian et al., 2009; Kang and Jang 2009).

Protein is highly specific and could produce complicated processes like DNA and RNA polymerase, where the DNA polymerase reaction is catalyzed by two-metal ion mechanism in the 3'-exonuclease reaction. In contrast RNA polymerase do more complicated function while it work in one ribonucleic acid strand only. They are able to initiate RNA synthesis without requiring a primer oligonucleotide exhibit an abortive initiation phase and

^{*}Corresponding author: e-mail: amroamara@web.de

[&]quot;Any change in the gene/protein lead to a new structure/function(s) is in the frame of PE" The author

they are target of a host regulatory proteins (activators, inhibitors, terminators and anti-terminators) that modulate gene expression (von-Hippel *et al.*, 1984; Erie *et al.*, 1992; Ikeda *et al.*, 1986; Brautigam and Steitz. *et al.*, 1988; Freemont *et al.*, 1988; Beese and Steitz, 1991).

Usage and importance

There are many concepts behind improving the quality of protein preparation for use in particular applications. In commercial applications, proteins can be less pure or completely crude; however, they must be free from any contamination in case of medicinal applications. Pharmaceutical and medically used proteins should be highly pure, active, correctly folded and biocompatible (Degim and Çelebi, 2007; Woods and Hamuro 2001; Nishijima 2005; Standley et al., 2008). Regarding the activity and stability, the protein must match perfectly the reason of its usage. Although, the use of PE in industrial applications has been increased significantly, screening of wild types organisms containing new proteins with particular function(s) should not be stopped (Satyanarayana et al., 2005). Organisms from extreme environments are becoming an important source of new backbones for engineering proteins with significantly different properties and flourished the protein databases with amazing structures (van den Burg, 2003). Successful engineered proteins in general require proper combination of their properties. For example, protease used in Powderdetergent would require stability against certain protein stains. Properties, such as stability, high activity (in the case of enzymes) and the ability to fold and interact correctly with surfaces are necessary for a variety of industrially important proteins (Goodenough 1995; Runbingh 1997; Arulmuthu et al., 2009; Crisman and Randolph 2009). PE should be applied to solve complicated problems and introduce unexplored new properties (Chen et al., 2002; Fowler et al., 2002; Kan 2002; O'Maille et al., 2002; Best et al., 2003; Kiss et al., 2003; Nielsen et al., 2004b; O'Maille et al., 2004; Sueda et al., 2004; Tandang et al., 2005; Bai et al., 2007; Lin et al., 2007; Alahuhta et al., 2008; Evdokimov et al., 2008).

Manipulation of protein through gene

Manipulation and modification of proteins chemically or through its constituent of amino acids is a complicated process, however modification of proteins through genes has been proved as an easier and more efficient approach. The basic techniques of genetic engineering are altering the responsible genes and generate the proteins with novel activities or properties. Such manipulations have frequently been used to discover structure/function(s) relationships, as well as to alter the activity, stability and properties of proteins (Gan *et al.*, 2002; Milik *et al.*, 2003).

Rational design-the logical approach

Rational design plays a crucial role in PE Phenomena and

manipulate different complicated processes such as regenerative medicine, tissue engineering, protein delivery system, cell adhesion interaction modulation, signal transduction, understanding the protein-protein interface and analysis the protein 3D (Moss *et al.*, 2009; Costa *et al.*, 2002; Liu *et al.*, 2007; Holmwood and Schindler 2009). Rational design has been improved by modification in the site directed mutagenesis methods, protein 2D and 3D, structure modelling, protein-protein interaction and their related software (Chie *et al.* 2004; Chie *et al.* 2005; Boeris *et al.* 2009; Kurgan 2008; Ludwig *et al.*, 2003; Shen *et al.* 2007; Sugimoto *et al.*, 2004; Yan *et al.* 2008).

The concept of protein 3D modeling is based on relating a structure to the possible expected function(s) of amino acids residues (homology modelling) and replacing them with other functions (molecular dynamics) in order to change their properties (Visegràdy *et al.*, 2001). Rational design requires some knowledge about the basic protein principle, genetic engineering tools and good skills in mathematics and algorithms and computing different software have been introduced to facilitate and reduce the steps incorporated in the PE (Du *et al.* 2009; Quine *et al.*, 2004).

Engineering protein is a sensitive and systematic process that can get a breakdown if any mistake is committed. In case of unwanted addition or loss of one or more base pair during the sequencing process or stepwise analysis will lead to DNA frame shift, causing a change in its amino acids sequences. Important role of protein modelling was represented in designing a protein 3D structure from other protein x-ray-structures (Chappell et al., 2002; Gaudier et al., 2002; Ozbek et al., 2002; Rhem et al., 2002; Vannini et al., 2002; Woo et al., 2002; Akarsu et al., 2003; Calderone et al., 2003; Feinberg et al., 2003; Yun et al., 2003; Ifuku et al., 2004; Parker et al., 2004; Timsit et al., 2006: Molina et al., 2009). Building a complete hypothetical model for protein did not crystallized yet is available by using the available protein structure database (Christendat et al., 2002; Choi et al. 2009; Han et al., 2005; Hattori et al., 2005; Holmes et al., 2006; Han et al., 2008; Jang et al., 2009).

Different computational algorithms have been introduced to identify the amino acid sequences that have low energies for target structures. The sequence-conformation space under investigation is usually large. Software for proteins modeling has been established with different ability to detect the presence of un-natural molecules (Anfinsen, 1972; Briki *et al.*, 2002; Dana *et al.*, 2006; Chen *et al.*, 2007; Cavasotto *et al.*, 2008; Bordoli *et al.*, 2009; Chen *et al.*, 2009; Chen and Shi 2009).

Some of the software is able to display and manipulate the protein 3D structures (defined by X-ray analysis).

Continues development of different software, instruments, x-ray machines, synchrotrons etc., together with advancement in the field of molecular biology and genetic engineering brought tremendous progress in the fields of PE (Fieulaine *et al.*, 2001; Thore *et al.*, 2003; Ball, 2008; Herrmann *et al.*, 2002a; Herrmann *et al.*, 2002b; Calderone 2004; Yao *et al.*, 2006; Fukunishi and Nakamura 2008; Abendroth *et al.*,; Procopiou *et al.*, 2004; Sugimoto *et al.* 2004; Yu *et al.*, 2004; Nicolini and Pechkova 2006; Pechkova and Nicolini 2006; Yu *et al.*, 2009).

Directed evolution

Directed evolution is an approach concerning with changes in the existing genetic material to modify its structure/function(s) (Yuen and Liu 2007). Natural evolution occurs under different pressures conditions but with capacity to save the organism from the newly activated pressure. Directed evolution has been developed using controlled or designed selection to introduce new selected function(s). It can be obtained through the design of successful selection protocol for the newly expected mutants.

The directed evolution is widely used to solve different industrial problems and to improve protein properties. It has also been cited in terms of molecular evolution, sexual PCR and *in vitro/vivo* evolution (Zhao *et al.*, 1997). It is the technique of preparing protein variants by recombining gene fragments *in vitro*, using PCR (Ko and Ma, 2005). After gene modification the new expressed protein can be subjected to another cycle(s) of modification (Crameri *et al.*, 1998).

de novo design of proteins [protein from scratch]

Enhancement of knowledge about different protein structure/functions encourage scientist to design proteins de novo (Iwata et al., 2001; Dai et al., 2002; Matsuura and Pluckthun 2004; Khodagholi et al. 2008; Klepeis et al., 2005; Takekiyo et al., 2007; Zou et al., 2007; Wang et al., 2008; Shiga et al., 2009). They used information about the molecular recognition, conformational preferences, and structure analyses of native proteins together with latest software for data analysis and manipulations. The design of new proteins is based on the available information, especially those about protein 3D structure. Any kind of knowledge about 2D and 3D protein structure will be of great important (Bryson et al., 1998). One example about the newly designed protein is α-helical peptides that catalyze helical peptide ligation, and was first reported by Ghadiri and co-workers (Severin et al., 1997). The positioning of the peptide substrate for catalysis is due to hydrophobic and electrostatic interactions between the two helices (Scheraga, 1985). Peptide ligation depends on the reaction between an Nterminal cysteine and a C-terminal thioester to form an amide bond between two peptide entities. Although, the design of new larger protein is restricted to redesigning of the existing ones, building new proteins is successfully achieved especially for their active sites. The re-design of the hydrophobic core has been performed on number of proteins, including the four-helix bundle ROP (Munson *et al.*, 1994) and ubiquitin (Munson *et al.*, 1994; Lazar *et al.*, 1997).

Chemical synthesis

Peptide synthesis can be produced chemically using organic synthesis techniques (Guzmán et al., 2006; Bang et al., 2005). Chemical ligation is used to produce peptides in high yield. The use of different strategies for chemical synthesis allows the researcher to introduce unnatural amino acids into the protein polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. However, these methods can only be used on small scales (such as in the laboratory) but not on commercial scale (Bray et al., 2003). Chemical synthesis has been determined inefficient for polypeptides having more longer than 300 amino acids (Mirzaei et al., 2008). The synthesized proteins may not readily assume their native tertiary structure (Finkelstein and Galzitskaya et al. 2004). Most chemical synthesis methods proceed from C-terminus to N-terminus, which is almost opposite to the biological reaction (Ostermeier 1999; Schmidt et al., 2001). However, chemical synthesis of protein is highly important, especially on the peptide level, while manipulating protein through gene is easier (in most cases). Meanwhile, manipulating short peptide through chemical synthesis is of great importance especially in pharmaceutical applications (Qabar et al., 1996).

Mutagenesis

Change of amino acid(s) in a particular protein could happen naturally and lead in many cases to sever human diseases (Kao et al., 2000). Chemical mutagenesis is an old method used for long time in strain improvement but in most cases it did not deliver where the mutation(s) has been happened (Chiang, 2004). The mutated DNA sequence using chemical mutagenesis is usually unknown (Chiang, 2004). Mutant induced chemically or by radiation can happen in any gene(s) (Ermakova-Gerdes et al., 1996). It is the role of the selection process to select the correct mutant (Michel et al., 2000). Moreover, it is important here to state that the mutagenesis should be wisely used. First priority will be for isolating of different kinds of proteins from nature. However, in certain cases particular protein needs to be engineered (Baum et al., 2004). It is important to direct the power of PE correctly and the screening of the existing natural protein(s) should not be stopped and should continue on priority basis.

Site directed mutagenesis

"The first step from the filed of genetic engineering to protein engineering"

The use of PE started in 1978 when a site directed

mutagenesis was introduced in the laboratory of Michael Smith (Hutchison et al., 1978). Michael Smith and his coworkers were the first to introduce synthetic oligonucleotides mediate mutations (Hutchison et al., 1978). The first modification of an enzyme, a tyrosyltransfer RNA synthetase, using these tools was performed in 1982 (Winter et al., 1982). Through site-directed mutagenesis a cysteine was replaced by a serine altering the protein's substrate binding characteristics. His revolutionary work within this field earned Michael Smith the Nobel Prize in 1993. Many alterations in a particular protein can be generated by making amino acid replacements at specific site in the polypeptide backbone. Each protein is unique in its amino acids composition. At any position in the sequence, an amino acid can be replaced by another using site directed mutagenesis method (Flaman et al., 2001; Bennett et al., 2003; Ho et al., 2005; Kasrayan et al., 2007; Choi et al., 2009; Edelheit et al., 2009). As an example, Pancreatic ribonuclease A is an enzyme comprising 124 amino acids, which cleaves the covalent bonds by the joining of ribonucleic acids (RNA). If at position 119 in the sequence the naturally occurring histidine is replaced by an alanine, this mutant protein is expected to have little or no biological activity, because histidine 119 is important for that activity. Other mutations have very little effect on their proteins. This is particularly true when the amino acid is substituted by other closely related amino acids and when the amino acid is not conserved in the same protein found in other organisms (Branningan and Wilkinson 2002; Lippincott-Schwartz and Patterson 2003; Wang and Schultz 2002). Another example about site directed mutagenesis will be discussed in the following sections of the review.

Deletion and Insertion mutants

Different amino acid can be deleted from the sequence, either separately or in groups (Chen et al., 2003). These processes are referred to as deletion mutants. Deletion mutation is usually used to map important region in a particular protein. Or, to reduce the protein size, by deleting apparently unnecessary part of a specific function. This usually results in missing one or more functions or properties of the wild type protein. It has been proved useful in creating smaller proteins that match perfectly the demand of different applications and is used to understand the importance of each part of the protein (Tratschin et al., 1984).

Whenever the deleted part impaired the protein function, that mean the protein active sites have been either partially or completely deleted (Liu *et al.*, 2000). Deletion mutation has been used to get rid of certain properties; in contrast, insertions mutation deal with inserting different amino acid relate base pairs within the gene sequence (Vorberg *et al.*, 2001; Fernando *et al.*, 2002; Ermakova *et al.*, 2003; Nielsen *et al.*, 2004a; Yang *et al.*, 2005; Brown

and Maloy 2006; King et al., 2006; Ellrott et al., 2007; Jiang and Blouin 2007; Tang et al., 2007; Thaa et al., 2008).

Hybrid/fusion proteins

Protein sequences can be joined or fused by another protein. The resulting protein is then called a hybrid, fusion, or chimeric, which generally has characteristics of the joint proteins. Protein fusions have been extensively used to study an interaction between two or more proteins (Kang and Jang 2009; Rehm *et al.*, 2002; Ludwig *et al.*, 2003).

Random mutagenesis

The probability that need to change particular protein is very high. Proteins, which are compose of 20 different amino acids, need significant number of site directed mutagenesis steps to alter its structure/functions. Random mutagenesis become a best choice when there is a shortage of existing information about protein structural/function(s) and the role of active residues (Amara et al., 2001, 2002; Amara, 2003). Random mutagenesis is applied to a gene coded for a protein. The process passes through a selection protocol(s) that enable to select newly mutated genes by detecting a difference in the expressed protein behaviours after the mutagenesis steps. Genes could be a subject of more than one cycle of mutagenesis (Greener et al., 1997). Random mutagenesis usually seems to be time consuming process, but alternative methods will be impossible if there is insufficient knowledge about protein structure/functions. Random mutagenesis mimics what could happen naturally that satisfies all the criteria leading to mutate certain gene; even randomly but with more force and directed strategy. Random mutagenesis can be used either in vivo using mutator strains or *in vitro* using different kinds of PCR random gene modification protocols. As an example a detailed in vivo random mutagenesis protocol for mutated $phaC_{Ap}$ synthase gene has been described by Amara et al., 2002. The protocol has given a direction to select mutates of PhaC_{An} synthase with enhanced activities, change the substrate specificity and give polymers with different monomeric composition. The in vivo random mutagenesis is based on mutating strain E. coli XL1 Red (Stratagene[©]) that is impaired in three of the DNA repairing mechanism pathways (Glickman and Radman, 1980).

Interestingly the changed amino acids were not in the active site, which indicate a clear role of the structure/function(s) relationship over the enzyme active sites as reported by Amara *et al.*, (2001, 2002). Taguchi *et al.*, (2001, 2002) used another strategy based on *in vitro* mutagenesis for $phaC_{Re}$ using PCR. It is important to highlight that a successful selection method should be used to efficiently recover the mutated gene from the wild type gene.

DNA shuffling

The DNA shuffling technique, introduced by Stemmer (1994), sets the directed mutagenesis approach apart from the earlier random mutagenesis, which enable to combine different DNA fragment from different proteins variants randomly using PCR. The screening efforts of Crameri *et al.*, (1998) have successfully applied this approach to improve the whole cell fluorescence by green fluorescent protein, which is widely used as a reporter for gene expression and regulation (Stemmer 1994; Crameri *et al.*, 1998).

You and Arnold (1994) in their study show a 471-fold increase in the activity of subtilisin E in 60% aqueous dimethylformamide. The engineered enzyme can function in organic solvents, which is different from its natural environments (You and Arnold, 1994).

Tailoring fundamental properties

Stability, activity, and surface properties are the most important criteria of technical enzymes. Isolation of enzymes with extra properties like extremophilic enzymes can be used to satisfy some of the PE demands that reduce the amount of engineered protein (Schäfer *et al.*, 2005; Leuschner and Antranikan 1995; Gomes *et al.*, 2004).

PE Applications

It increases an understanding about the enzyme properties, such as stability, activity, surface properties, purification and introduction of new applications.

Technical enzymes

In contrast to other fields of science, research which attracts the attention of industrial sectors is concerned with both cost and profit.

Technical enzymes are one of the major biotechnological industrial products, which had a market share of about 1 billion USD in 1999 (Schäfer et al., 2005). Part of these products is the thermostable enzymes, which are well consumed in different industrial processes and constitute more than 65% of the worldwide market (Leuschner and Antranikan, 1995; Rao et al., 1998). Enzymes have been used in many important industrial products. Their applications can be made in paper industry, detergent, drugs, degradation of different wastes, textile, food, pharmaceutical, leather, degumming of silk goods, manufactureing of liquid glue, cosmetics, meat tenderization, cheese production, growth promoters etc (Leuschner and Antranikan, 1995; Rao et al., 1998; Gomes and Steiner, 2004; Cowan, 1996). Proteases have been used in many industrial processes including detergent, wool quality improvement, meat tenderization, leather, etc, (Amara and Serour 2008; Gupta et al., 2002a; Gupta et al., 2002b; Poza et al., 2007; Tang et al., 2004; Thangam and Rajkumar 2002; Valer, 1975). Ideally, the proteases used in detergent formulations should have high

activity and stability within a broad range of pH and temperatures, and should be compatible with various detergent components along with oxidizing and sequestering agents (Horikoshi 1999; Ito *et al.*, 1998). PE has been used to improve the stability of BPN' from *Bacillus amyfoliquefaciens* in the chelating environment of the detergent by deleting strong calcium-binding site (residues 75-83) and re-stabilizing the enzyme through interactions without involving the metal-ion binding. Stability increase of more than 1000-fold in 10 mM EDTA have been reported for this protease (Strausberg *et al.*, 1995).

The surface properties of BPN' have also been engineered. Variants of mutates produce negative charges in the active site region of the molecule adsorbed less strongly (Broda *et al.*, 1996) and gave better laundry performance (Brode *et al.*, 1966; Rubingh, 1996a, b). Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of *Psychrophilic subtilisin* S41 has been designed by Yang *et al* (2008).

Pharmaceutical applications

By rough estimate, about 350 biotechnology drugs currently undergo development. These include vaccines, gene therapy, antisense technology, and antibodies derived from 'humanised' transgenic mice (Whittingham *et al.*, 1997; Muller *et al.*, 2004).

PE has been used to produce therapeutic pharmaceutical proteins with improved properties such as increased solubility and stability.

Major protein based drugs applications problem

Different proteins which show activity in vitro and have a promising role in medicinal applications have been filed. The reason is that they are primary molecules with suboptimal affinity and poor half-life in vivo, which lead to poor efficacy (Moore et al., 1993). In other cases, many of the original protein drug molecules are nonhuman that caused immune responses against the drug itself. Affinity, half-life, and dosing regime are all inter-related and play their role in determining the clinical efficacy and financial viability of protein-based drugs. This enhanced understanding about the issues affecting a success in drug development has been augmented by increased capabilities in PE and selection/screening technologies. These technologies have been used to improve the effectiveness of a number of proteins used as drug (Ki et al., 2003).

Reducing the immunogenicity of protein drug molecules

Different non-human proteins, which appear *in vitro* high activity, are bonded by the immune system. This lead to focusing on using protein from human sources/or

humanized protein (Conner et al., 1998; Shen et al., 2006).

For example Pulmozyme (Genentech) is human DNAse derived drugs used in managing cystic fibrosis and bovine pancreatic DNAse I (Shak *et al.*, 1990). The immunoginicity of mouse antibodies in human protein was one of the major problems of the early monoclonal antibodies. Chimaeric antibodies by fusing mouse variable domains to human constant domains improve the body acceptance. This chimaeric retain binding specificity and reduce the amount of mouse sequence in their backbone.

In 1998, Remicade (Centocor), a TNFa-neutralising chimaeric monoclonal antibody, was approved for use in treating Crohn's disease and rheumatoid arthritis (Breedveld, 2000). A reduction in monoclonal antibody immunogenicity has taken a stage further by complementarily-determining region (CDR) grafting, where the CDRs of mouse antibodies were grafted onto human frameworks to further reduce the proportion of mouse sequences in the drug while retaining its binding specificity (Jones, 1986).

Examples

Insulin

Insulin (lispro and aspart) was engineered through mutagenesis to create monomeric forms, which are fast acting (Sensh *et al.*, 2010). Conversely, another form of insulin (glargine) was created by mutagenesis to precipitate upon injection and give a sustained release of insulin. Whittingham *et al.*, (1997) have reported a crystal structure of prolonged-acting insulin with albuminbinding properties (Sanger and Thompson 1953a,b; Skelton *et al.*, 2001; Vajdos *et al.*, 2001; Boes *et al.*, 2002; Gavira *et al.*, 2002; Teixeira *et al.*, 2002; Weiss *et al.*, 2002; Miyahara *et al.*, 2003; Headey *et al.*, 2004; Hua and Weiss 2004; Fortier *et al.*, 2005; Li *et al.*, 2005; Mark *et al.*, 2005; Sala *et al.*, 2005; Huang *et al.*, 2006; Kuang *et al.*, 2006; Chandrashekaran *et al.*, 2007; Kim *et al.*, 2007; Wan *et al.*, 2008).

Catalytic antibody

Antibodies are proteins that normally bind to a specific molecule but do not alter the bound molecule in any way (Coenraad *et al.*, 2005). A catalytic antibody is a variant of an antibody which has been changed by mutations to have a novel sequence that folds into a structure, resulting into a specific reaction (such as amide bond formation, ester hydrolysis, and decarboxylation). Catalytic antibodies function like enzymes, and are created to catalyze reactions for which there are no naturally occurring enzymes (Paul *et al.*, 1994; Ali *et al.*, 2009). Fifty or more reactions have been made by the action of catalytic antibodies, which were obtained individually by the methods of PE (Branningan and Wilkinson 2002).

Polyketide synthases

Antibiotics such as erythromycin are made by large multidomain proteins called polyketide synthases (Findlow *et al.*, 2003; Chin *et al.*, 2006; Lai *et al.*, 2006; Alekseyev *et al.*, 2007). Site-directed mutagenesis has been used to modify the substrate specificity of the polyketide synthase reaction so that the new product contains a malonate unit, whereas the product of the original enzyme contained a methylmalonate unit (Crawford *et al.*, 2006). In addition to site-directed mutagenesis, the order of the polyketide synthase domains has been shuffled to create proteins that could catalyze the synthesis of new antibiotics (Branningan and Wilkinson 2002).

From basic research to products

It is important to direct basic research to introduce certain products. In fact, the science and market are tightly related to each other by many aspects. Previously a description about industrial (e.g. Protein) and Pharmaceutical approach (eg. Catalytic antibodies) have been presented which have direct application in the Market. However, there are many other examples about basic research, which have been converted to commercial products (Crawford *et al.*, 2006).

From tem-1 β -lactamase to GeneEditorTM (Promiga[©])

"Apparently, engineering antibiotic resistant gene is not a good idea, however the scientist imagination and innovation enable them to see behind that"

 β -lactamase is the resistant factor to the β -lactam antibiotics. The plasmid-encoded TEM β -lactamase is the most prevalent one in Gram-negative enteric bacteria (Venkatachalam *et al.*, 1994; Matagne 1998).

A discovery of new generation β -lactam antibiotics leads to induce new resistant strains that are reported as sensitive. The scientists are typing to understand why microbes have the ability of conversion to a newly resistant form.

Venkatachalam et al., (1994) have investigated TEM β lactamase variants with amino acid substitutions in the active-site pocket of the enzyme. The experiments have been identified in natural isolates with increased resistance to extended-spectrum cephalosporins, such as cefotaxime and ceftazidime. Mutants were selected for 100-fold more ceftazidime resistance than wild-type. All mutants had a serine substitution at position 238, a lysine or arginine at position 240, and a small amino acid at position 241. The role of each substitution was investigated by constructing individual G238S, E240K, and R241G mutants as well as the G238, SE240K double mutant. The G238S mutant increases catalytic efficiency for both ceftazidime and cefotaxime. However, to achieve significant increases in catalytic efficiency, both G238S and the E240K mutants are required. The R241G mutant

results in a small increase in catalytic efficiency for only ceftazidime. Using the same strategy the GeneEditorTM in vitro Site-Directed Mutagenesis System has been made. This system uses antibiotic selection to obtain high frequency mutants. Selection of oligonucleotides provided the GeneEditorTM System encode mutations that alter the ampicillin resistance gene, creating constructs that confer new additional resistance to the GeneEditorTM antibiotic selection mixture. Mutants generation using this system retain ampicillin resistance and gain resistance to the GeneEditorTM antibiotic selection mixture.

Several research studies have been conducted using GeneEditorTM protocol. Amara and Rhem (2003) have described seven site directed mutations that have been performed in $PhaC_{Pa}$, where 5 conserved residues were replaced by site directed mutagenesis in order to identify the role of these amino acids in catalysis.

CONCLUSION AND FUTURE PROSPECTIVE

PE is a young discipline that has been branched out from the field of genetic engineering. It has been elevated because of the progress in the field of molecular biology. PE is based on the available knowledge about the proteins' structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of PE tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function(s) is in the frame of PE. Meanwhile, there are some common tools used to reach a specific target. Site directed mutagenesis, which is the first tool that has been used in protein engineering, is still the most favourite one nowadays. More active industrial and pharmaceutical based proteins have been invented by the filed of PE to introduce new function as well as to change its interaction with surrounding environment. Histag proteins are an example (Hoffmann et al. 2002). In industrial and medicinal applications, PE has been used to improve the products quality. This is lead to increase the profit of different industrial sectors by yielding safe, efficient, and comfortable products.

PE has a bright future. As applied science, it has been able to solve many complicated scientific points. Improvement in protein applications is the most promising part of PE. As described in this review, the research being done on this filed is significantly

important, which can enhance its scientific and technical applications. Scientists working on PE should be scaled, knowledgeable and patient. As an alternative, a scientific group having scientists with different background can lead to successful research findings. PE put great opportunities in the hands of scientists to improve the protein based industry within the frame of technical and pharmaceutical applications. The future brings an increasing interest in using PE and its applications to industrial productions.

ACKNOWLEDGMENT

This work was supported by Deanship of Scientific Research and Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. I acknowledge Assistant Prof. Dr. Haider Zaman from Geophysics Department Faculty of Science, King Saud University for some technical advices and revision of this review.

REFERENCES

Abendroth J, McCormick MS, Edwards TE, Staker B, Loewen R, Gifford M, Rifkin J, Mayer C, Guo W, Zhang Y, Myler P, Kelley A, Analau E, Hewitt SN, Napuli AJ, Kuhn P, Ruth RD and Stewart LJ (2010). X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source. *J. Struct. Funct. Genomics*, **11**: 91-100.

Akarsu H, Burmeister WP, Petosa C, Petit I, Muller CW, Ruigrok RW and Baudin F (2003). Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). *EMBO J.*, **22**: 4646-4655.

Alahuhta M, Salin M, Casteleijn MG, Kemmer C, El-Sayed I, Augustyns K, Neubauer P and Wierenga RK (2008). Structure-based protein engineering efforts with a monomeric TIM variant: The importance of a single point mutation for generating an active site with suitable binding properties. *Protein Eng. Des. Sel.*, 21: 257-266.

Alekseyev VY, Liu CW, Cane DE, Puglisi JD and Khosla C (2007). Solution structure and proposed domain domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. *Protein Sci.*, **16**: 2093-2107.

Ali M, Hariharan AG, Mishra N and Jainal S (2009). Catalytic antibodies as potential therapeutics. *Indian J. Biotechnol.*, **8**: 253-258

Amara AA (2003). Ph.D. Thesis. Biochemical and Molecular Characterization of PHA synthases from *Pseudomonas aeruginosa*, *Ralstonia eutropha*, *Aeromonas punctata* as well as of the (*R*)-3-hydroxyacyl-ACP:CoA transacylase from *Pseudomonas putida*. Münster University.

- Amara AA and Rehm BH (2003). Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from *Pseudomonas aeruginosa*-mediated synthesis of a new polyester: Identification of catalytic residues. *Biochem J.*, **374(2)**: 413-421.
- Amara AA and Serour EA (2008). Wool quality improvement using thermophilic crude proteolytic microbial enzymes. *American-Eurasian J. Agric. Environ. Sci.*, **3**(4): 554-560.
- Amara AA, Rehm BHA and Steinbüchel A (2001). Biopolymer overproduction by new mutants using simple methods for selection. *In*: DAAD-Bioforum-Berlin "Grenzenlos forschen" *DAAD Biotechnologische Methoden*, pp.231-239.
- Amara AA, Steinbüchel A and Rehm BHA (2002). *In vivo* evolution of the *Aeromonas punctata* polyhydroxyalkanoate (PHA) synthase: Isolation and characterization of modified PHA synthases with enhanced activity. *Appl. Microbiol. Biotechnol.*, **59**: 477-482.
- Anfinsen C (1972). The formation and stabilization of protein structure. *Biochem. J.*, **128**(4): 737-749.
- Anthea M, Hopkins J, McLaughlin CW, Maryanna SJ, Warner Q, LaHart D and Wright JD (1993). Human Biology and Health. Englewood Cliffs, New Jersey, Prentice Hall, USA.
- Arulmuthu E, Williams D and Versteeg H (2009). The arrival of genetic engineering. *IEEE Eng. Med. Biol. Mag.*, **28**(1): 40-54.
- Bai Y, Feng H and Zhou Z (2007). Population and structure determination of hidden folding intermediates by native-state hydrogen exchange-directed protein engineering and nuclear magnetic resonance. *Methods Mol. Biol.*, **350**: 69-81.
- Ball P (2008). Complexity crystallised: Protein x-ray crystallography has come a long way from a 12 year search for the structure of a single protein. *Chemistry World*, pp.50-56.
- Bang D, Makhatadze GI, Tereshko V, Kossiakoff AA and Kent SB (2005). Total chemical synthesis and X-ray crystal structure of a protein diastereomer: [D-Gln 35]ubiquitin. *Angew. Chem. Int. Ed. Engl.*, **44**: 3852-3856.
- Baum C, Kalle C, Staal FJT, Fehse B, Schmidt M, Weerkamp F, Karlsson S, Wagemaker G and Williams DA (2004). Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. *Molecular Therapy*, **9**(1): 5-13.
- Beese LS and Steitz TA (1991). Structural basis for the 39-59 exonuclease activity of *Escherichia coli* DNA polymerase I: A two metal ion mechanism. *EMBO J.*, **10**: 25-33.
- Bennett EJ, Bjerregaard J, Knapp JE, Chavous DA, Friedman AM, Royer WE Jr. and O'Connor CM (2003). Catalytic implications from the Drosophila

- protein L-isoaspartyl methyltransferase structure and site-directed mutagenesis. *Biochem.*, **42**: 12844-12853.
- Best RB, Fowler SB, Herrera JL, Steward A, Paci E and Clarke J (2003). Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. *J. Mol. Biol.*, **330**: 867-877.
- Boeris V, Farruggia B, Romanini D and Pico G (2009). How flexible polymers interact with proteins and its relationship with the protein separation method by protein-polymer complex formation. *Protein J.*, **28**: 233-239.
- Boes M, Dake BL, Booth BA, Sandra A, Bateman M, Knudtson K and Bar RS (2002). Structure-function relationships of insulin-like growth factor binding protein 6 (IGFBP-6) and its chimeras. *Growth Horm. IGF. Res.*, **12**: 91-98.
- Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J and Schwede T (2009). Protein structure homology modeling using SWISS-MODEL workspace. *Nat Protoc.*, **4**: 1-13.
- Branningan JA and Wilkinson AJ (2002). Protein engineering 20 years on, *Nature Rev. Mol. Cell Biol.*, **3**: 964-970.
- Brautigam CA and Steitz TA (1998). Structural principles for the inhibition of the 39-59 exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. *J. Mol. Biol.*, **277**: 363-377.
- Bray BL (2003). Large-scale manufacture ofpeptide therapeutics by chemical synthesis. *Nat. Rev. Drug Discov.*, **2**: 587-593.
- Breedveld FC (2000). Therapeutic monoclonal antibodies. *Lancet*, **355**: 735-740.
- Briki F, Doucet J and Etchebest C (2002). A procedure for refining a coiled coil protein structure using x-ray fiber diffraction and modeling. *Biophys. J.*, **83**:1774-83.
- Brode PF, Erwin CR, Rauch DS, Barnett BL, Armpriester JM, Wang ESF and Rubingh DN (1966). Subtilisin BPN' variants: Increased hydrolytic activity on surface-bound substrates via decreased surface activity. *Biochem.*, **36**: 3162-3169.
- Brode PF. Erwin CR. Rauch DS. Barnett BL, Armpriester JM,. Wang ESF and Rubingh DN (1966). Subtilisin BPN' variants: Increased hydrolytic activity on surface-bound substrates via decreased surface activity. *Biochem.*, **36**: 3162-3169.
- Brown E and fMaloy S (2006). Facile approach for constructing TEV insertions to probe protein structure *in vivo*. *Biotechniques*., **41**: 721-724
- Bryson JW, Desjarlais JR, Handel TM and DeGrado WF (1998). From coiled coils to small globular proteins: design of a native-like three-helix bundle. *Protein Sci.*, **7**(6): 1404-1414.
- Calderone V (2004). Practical aspects of the integration of different software in protein structure solution. *Acta. Crystallogr. D. Biol. Crystallogr.*, **60**: 2150-2155.

- Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R and Zanotti G (2003). Crystal structure of the PsbQ protein of photosystem II from higher plants. *EMBO Rep.*, **4**: 900-905
- Caraglia I M. Vitale G. Marra M. S. Del Prete, A. Lentini,
 A. Budillon, S. Beninati and A. Abbruzzese (2004).
 Translational and post-translational modifications of proteins as a new mechanism of action of Alpha-Interferon: Review article *Amino Acids*, 26: 409-417.
- Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O'Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML and Monsma FJ, Jr. (2008). Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. *J. Med. Chem.*, **51**: 581-588.
- Chandrashekaran IR, Yao S, Wang CC, Bansal PS, Alewood PF, Forbes BE, Wallace JC, Bach LA and Norton RS (2007). The N-terminal subdomain of insulin-like growth factor (IGF) binding protein 6. Structure and interaction with IGFs. *Biochem.*, **46**: 3065-3074.
- Chappell JD, Prota AE, Dermody TS, Stehle T (2002). Crystal structure of reovirus attachment protein sigmal reveals evolutionary relationship to adenovirus fiber. *EMBO J.*, **21**: 1-11.
- Chen C, Hyytinen E-R, Sun X, Helin HJ, Koivisto PA, Frierson HF, Jr, Vessella RL and Dong JT (2003). Deletion, Mutation, and Loss of Expression of KLF6 in Human Prostate Cancer. Am. J. Pathol., 162(4): 1349-1354
- Chen QL, Tang XS, Yao WJ and Lu SQ (2009). Bioinformatics analysis of the complete sequences of cytochrome b of Takydromus sylvaticus and modeling the tertiary structure of encoded protein. *Int. J. Biol. Sci.*, **5**: 596-602.
- Chen X and Shi Z (2009). Sequence Analysis of the Full-length cDNA and Protein Structure Homology Modeling of FABP2 from Paralichthys Olivaceus. *Bioinform. Biol. Insights*, **3**: 29-35.
- Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Rao Z and Wong LL (2002). Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. *J. Biol. Chem.* 277: 37519-37526
- Chen Y, Tan W, Lu X, Lu Y, Qin S, Li S, Zeng Y, Bu H, Li Y and Cheng J (2007). Full-length cDNA cloning and protein three-dimensional structure modeling of porcine prothrombin. *Blood Cells Mol. Dis.*, **38**: 93-99.
- Chiang SJ (2004). Strain improvement for fermentation and biocatalysis processes by genetic engineering technology. *J. Ind. Microbiol. Biotechnol.*, **31**: 99-108.
- Chie L, Chung D and Pincus MR (2005). Specificity of inhibition of ras-p21 signal transduction by peptides

- from GTPase activating protein (GAP) and the son-of sevenless (SOS) ras-specific guanine nucleotide exchange protein. *Protein J.*, **24**: 253-258.
- Chie L, Friedman FK, Duncan T, Chen JM, Chung D and Pincus M (2004). Loop domain peptides from the SOS ras-guanine nucleotide exchange protein, identified from molecular dynamics calculations, strongly inhibit ras signaling. *Protein J.*, **23**: 229-234.
- Chin KH, Chou CC, Wang AH and Chou SH (2006). Crystal structure of XC5357 from Xanthomonas campestris: a putative tetracenomycin polyketide synthesis protein adopting a novel cupin subfamily structure. *Proteins*, **65**: 1046-1050.
- Choi JH, May BC, Govaerts C and Cohen FE (2009). Site-directed mutagenesis demonstrates the plasticity of the beta helix: implications for the structure of the misfolded prion protein. *Structure*, **17**: 1014-1023.
- Choi SB, Normi YM and Wahab HA (2009). Why hypothetical protein KPN00728 of *Klebsiella pneumoniae* should be classified as chain C of succinate dehydrogenase? *Protein J.*, **28**: 415-427.
- Christendat D, Saridakis V, Kim Y, Kumar PA, Xu X and Semesi A, Joachimiak A, Arrowsmith CH, Edwards AM (2002). The crystal structure of hypothetical protein MTH1491 from Methanobacterium thermoautotrophicum. *Protein Sci.*, **11**: 1409-1414.
- Coenraad JH and Hendriksen FM (2005). Refinement of polyclonal antibody production by combining oral immunization of chicken swith harvest of antibodies from the egg yolk. *ILAR J.* **46**: 294-299.
- Connor SJO', Meng YG, Rezaie AR and Presta LZ (1998). Humanization of anantibody against human protein C and calcium-dependence involving framework residues. *Protein Engineering*, **11**(4): 321-328.
- Costa MH, Quintilio W, Sant'Anna OA, Faljoni-Alario A and de Araujo PS (2002). The use of protein structure/activity relationships in the rational design of stable particulate delivery systems. *Braz. J. Med. Biol. Res.*, **35**: 727-730.
- Cowan D (1996). Industrial enzyme technology. *Trends Biotechnol.*, **14**(6): 177-178.
- Crameri A, Raillard SA, Bermudez E and Stemmer WP (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. *Nature*, **391**: 288-291.
- Crawford JM, Dancy BCR, Hill EA, Udwary DW and Townsend CA (2006). Identification of astarte runit acyl-carrier protein transacylase domain in aniterative type I polyketidesynthase. *PNAS*, **103**(45): 16728-16733.
- Crisman RL and Randolph TW (2009). Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. *Biotechnol. Bioeng.*, **102**(2): 483-492.
- Dai QH, Tommos C, Fuentes EJ, Blomberg MR, Dutton PL and Wand AJ (2002). Structure of a de novo

- designed protein model of radical enzymes. *J. Am. Chem. Soc.*, **124**: 10952-10953.
- Dana CD, Bevan DR and Winkel BS (2006). Molecular modeling of the effects of mutant alleles on chalcone synthase protein structure. *J. Mol. Model.*, **12**: 905-914.
- Debbage P (2009). Targeted drugs and nanomedicine: present and future. *Curr. Pharm. Des.*, **15**(2): 153-172.
- Degim IT and Çelebi N (2007). Controlled delivery of peptides and proteins. *Curr. Pharm. Des.*, **13**: 99-117.
- Du X, Cheng J and Song J (2009). Improved prediction of protein binding sites from sequences using genetic algorithm. *Protein J.*, **28**: 273-280.
- Edelheit O, Hanukoglu A and Hanukoglu I (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. *BMC Biotechnol.*, **9**: 61.
- Ellrott K, Guo JT, Olman V and Xu Y (2007). Improvement in protein sequence-structure alignment using insertion/deletion frequency arrays. *Comput. Syst. Bioinformatics Conf.*, **6**: 335-342.
- Erie DA, Yager TD and von-Hippel PH (1992). The single-nucleotide addition cycle in transcription: A biophysical and biochemical perspective. *Annu. Rev. Biophys. Biomol. Struct.*, **21**: 379-415.
- Ermakova I, Boldyreff B, Issinger OG and Niefind K (2003). Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit. *J. Mol. Biol.*, **330**: 925-934.
- Ermakova-Gerdes S, Shestakov S and Vermaas W (1996). Random chemical mutagenesis of a specific psbDI region coding for a lumenal loop of the D2 protein of photosystem II in Synechocystis sp. PCC 6803. *Plant Mol. Biol.*, **30**: 243-254.
- Evdokimov AG, Mekel M, Hutchings K, Narasimhan L, Holler T, McGrath T, Beattie B, Fauman E, Yan C, Heaslet H, Walter R, Finzel B, Ohren J, McConnell P, Braden T, Sun F, Spessard C, Banotai C, Al-Kassim L, Ma W, Wengender P, Kole D, Garceau N, Toogood P and Liu J (2008). Rational protein engineering in action: the first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus. *J. Struct. Biol.*, **162**: 152-169.
- Feinberg H, Uitdehaag JC, Davies JM, Wallis R, Drickamer K and Weis WI (2003). Crystal structure of the CUB1-EGF-CUB2 region of mannose-binding protein associated serine protease-2. *EMBO J.*, **22**: 2348-2359.
- Fernando P, Abdulle R, Mohindra A, Guillemette JG and Heikkila JJ (2002). Mutation or deletion of the C-terminal tail affects the function and structure of Xenopus laevis small heat shock protein, hsp30. *Comp. Biochem. Physiol. B. Biochem. Mol. Biol.*, **133**: 95-103.
- Fieulaine S, Morera S, Poncet S, Monedero V, Gueguen-Chaignon V, Galinier A, Janin J, Deutscher J and Nessler S (2001). X-ray structure of HPr kinase: A

- bacterial protein kinase with a P-loop nucleotidebinding domain. *EMBO J.*, **20**: 3917-3927.
- Findlow SC, Winsor C, Simpson TJ, Crosby J and Crump MP (2003). Solution structure and dynamics of oxytetracycline polyketide synthase acyl carrier protein from Streptomyces rimosus. *Biochem.*, **42**: 8423-8433.
- Finkelstein AV and Galzitskaya OV (2004). Physics of protein folding. *Physics of Life Reviews*, pp.23-56.
- Flaman AS, Chen JM, Van Iderstine SC and Byers DM (2001). Site-directed mutagenesis of acyl carrier protein (ACP) reveals amino acid residues involved in ACP structure and acyl-ACP synthetase activity. *J. Biol. Chem.*, **276**: 35934-35939.
- Fortier LA, Kornatowski MA, Mohammed HO, Jordan MT, O'Cain LC and Stevens WB (2005). Age-related changes in serum insulin-like growth factor-I, insulin-like growth factor-I binding protein-3 and articular cartilage structure in Thoroughbred horses. *Equine*. *Vet. J.*, **37**: 37-42.
- Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M and Clarke J (2002). Mechanical unfolding of a titin Ig domain: Structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. *J. Mol. Biol.*, **322**: 841-849.
- Freemont PS, Friedman JM, Beese LS, Sanderson MR and Steitz TA (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. *Proc. Natl. Acad. Sci. USA.*, **85**: 8924-8928.
- Fukunishi Y, Nakamura H (2008). Prediction of protein-ligand complex structure by docking software guided by other complex structures. *J. Mol. Graph. Model.*, **26**: 1030-1033.
- Gan HH, Perlow RA, Roy S, Ko J, Wu M, Huang J, Yan S, Nicoletta A, Vafai J, Sun D, Wang L, Noah JE, Pasquali S and Schlick T (2002). Analysis of Protein Sequence/Structure Similarity Relationships. *Biophysical J.*, **83**: 2781-2791.
- Gaudier M, Gaudin Y and Knossow M (2002). Crystal structure of vesicular stomatitis virus matrix protein. *EMBO J.*, **21**: 2886-2892.
- Gavira JA, Toh D, Lopez-Jaramillo J, Garcia-Ruiz JM and Ng JD (2002). Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. *Acta. Crystallogr. D. Biol. Crystallogr.*, **58**: 1147-1154.
- Glickman, BW and Radman M (1980). *Escherichia coli* mutator mutants deficient in methylation-instructed DNA Mismatch correction. *Proc. Natl. Acad. Sci. USA.* **77**: 1063-1067.
- Gomes J and Steiner W (2004). Extremophiles and Extremozymes. *Food Technol. Biotechnol.*, **42**(4): 223-235
- Goodenough PW (1995). A review of protein engineering for the food industry. *Mol. Biotechnol.*, **4**: 151-166.

- Greener A, Callahan M and Jerpseth B (1997). An efficient random mutagenesis technique using an *E. coli* Mutator Strain. *Mol. Biotechnol.*, **7**: 189-195.
- Gupta R, Beg QK and Lorenz P (2002b). Bacterial alkaline proteases: molecular approaches and industrial applications. *Appl. Microbiol. Biotechnol.*, **59**: 15-32.
- Gupta R, Beg QK, Khan S and Chauhan B (2002a). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. *Appl. Microbiol. Biotechnol.*, **60**: 381-395.
- Guzmán F, Barberis S and Illanes A (2006). Peptide synthesis: chemical or enzymatic. *Electron J. Biotechn.*, 0717-3458
- Han KD, Park SJ, Jang SB and Lee BJ (2008). Solution structure of conserved hypothetical protein HP0892 from Helicobacter pylori. *Proteins*, **70**: 599-602.
- Han KD, Park SJ, Jang SB, Son WS and Lee BJ (2005). Solution structure of conserved hypothetical protein HP0894 from Helicobacter pylori. *Proteins*, 61: 1114-1116.
- Harris A (1992). Cystic fibrosis gene. *Brit. Med. Bull.*, **48**: 738-753.
- Hartely H (1951). Origin of the word 'Protein'. *Nature*, **168**: 244.
- Hattori M, Mizohata E, Manzoku M, Bessho Y, Murayama K, Terada T, Kuramitsu S, Shirouzu M and Yokoyama S (2005). Crystal structure of the hypothetical protein TTHA1013 from Thermus thermophilus HB8. *Proteins*, **61**: 1117-1120.
- Headey SJ, Keizer DW, Yao S, Brasier G, Kantharidis P, Bach LA and Norton RS (2004). C-terminal domain of insulin-like growth factor (IGF) binding protein-6: Structure and interaction with IGF-II. *Mol. Endocrinol.*, **18**: 2740-2750.
- Herrmann T, Guntert P and Wuthrich K (2002a). Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. *J. Biomol. NMR.*, **24**: 171-189.
- Herrmann T, Guntert P and Wuthrich K (2002b). Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. *J. Mol. Biol.*, **319**: 209-227.
- Ho Y, Hsiao JC, Yang MH, Chung CS, Peng YC, Lin TH, Chang W and Tzou DL (2005). The oligomeric structure of vaccinia viral envelope protein A27L is essential for binding to heparin and heparan sulfates on cell surfaces: a structural and functional approach using site-specific mutagenesis. *J. Mol. Biol.*, **349**: 1060-1071.
- Hoffmann N, Amara AA, Beermann BrB, Qi Q, Hinz HJ and Rehm BHA (2002). Biochemical characterization of the *Pseudomonas putida* 3-hydroxyacyl ACP:CoA transacylase which diverts intermediates of fatty acid *de novo* biosynthesis. *J. Biol. Chem.*, 277: 42926-42936.

- Holmes MA, Buckner FS, Van Voorhis WC, Mehlin C,
 Boni E, Earnest TN, DeTitta G, Luft J, Lauricella A,
 Anderson L, Kalyuzhniy O, Zucker F, Schoenfeld LW,
 Hol WG and Merritt EA (2006). Structure of the conserved hypothetical protein MAL13P1.257 from Plasmodium falciparum. Acta. Crystallogr. Sect. F.
 Struct. Biol. Cryst. Commun., 62: 180-185.
- Holmwood G and Schindler M (2009). Protein structure based rational design of ecdysone agonists. *Bioorg. Med. Chem.*, **17**: 4064-4070.
- Horikoshi K (1999). Alkaliphiles: some applications of their products for biotechnology. *Microbiol. Mol. Biol. Rev.*, **63**: 735-750.
- Hua QX and Weiss MA (2004). Mechanism of insulin fibrillation: The structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. *J. Biol. Chem.*, **279**: 21449-21460.
- Huang K, Maiti NC, Phillips NB, Carey PR and Weiss MA (2006). Structure-specific effects of protein topology on cross-beta assembly: Studies of insulin fibrillation. *Biochem.*, **45**: 10278-10293.
- Huang RB, Du QS, Wei YT, Pang ZW, Wei H and Chou KC. (2009). Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design. *J. Theor. Biol.*, **256**(3): 428-435.
- Hutchison CA, Phillips S, Edgell MH, Gillam S, Jahnke P and Smith M (1978). Mutagenesis at a specific position in a DNA sequence. *J. Biol. Chem.*, **253**(18): 6551-6560.
- Ifuku K, Nakatsu T, Kato H and Sato F (2004). Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. *EMBO Rep.*, **5**: 362-367.
- Ikeda RA and Richardson CC (1986). Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. *Proc. Natl. Acad. Sci. USA.*, **83**: 3614-3618.
- Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S and Hatada Y (1998). Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. *Extremophiles*, **2**: 185-190.
- Iwata Y, Naito S, Itai A and Miyamoto S (2001). Protein structure-based de novo design and synthesis of aldose reductase inhibitors. *Drug Des. Discov.*, **17**: 349-359.
- Jang SB, Kwon AR, Son WS, Park SJ and Lee BJ (2009). Crystal structure of hypothetical protein HP0062 (O24902_HELPY) from Helicobacter pylori at 1.65 A resolution. J. Biochem., 146: 535-540.
- Jiang H and Blouin C (2007). Insertions and the emergence of novel protein structure: A structure-based phylogenetic study of insertions. *BMC Bioinformatics*, **8**: 444.
- Jones PT, Dear PH, Foote J, Neuberger MS and Winter G (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. *Nature*, **321**: 522-525.

- Kan CC (2002). Impact of recombinant DNA technology and protein engineering on structure-based drug design: case studies of HIV-1 and HCMV proteases. *Curr. Top. Med. Chem.*, **2**: 247-269.
- Kang W and Jang J (2009). Protein engineering, expression, and activity of novel fusion protein processing keratinocyte growth factor 2 and fibronectin. *Acta. Biochim. Biophys Sin.*, **41**: 16-20.
- Kao SL, Chong SS and Lee CGL (2000). The role of single nucleotide polymorphisms (SNPs) in understanding complex disorders and pharmacogenomics. *Ann. Acad. Med. Singapore.*, **29**: 376-382.
- Kasrayan A, Bocola M, Sandstrom AG, Laven G and Backvall JE (2007). Prediction of the Candida antarctica lipase A protein structure by comparative modeling and site-directed mutagenesis. *Chembiochem.*, **8**: 1409-1415.
- Kendrew J, Bodo G, Dintzis H, Parrish R, Wyckoff H and Phillips D (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. *Nature*, **181**(4610): 662-666.
- Kendrew JC, Bodo G, Dintzis HM and Parrish RG (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. *Nature*, **181**(4610): 662-666.
- Khodagholi F, Eftekharzadeh B and Yazdanparast R (2008). A new artificial chaperone for protein refolding: sequential use of detergent and alginate. *Protein J.*, **27**: 123-129.
- Ki TK, Rosenberg J, Virtanen P, Lamminmäki U, Tuomola M and Saviranta P (2003). Further improvement of broad specificity hapten recognition with protein engineering. *Protein Eng.*, **16**(1): 37-46.
- Kim SJ, Jeong DG, Jeong SK, Yoon TS and Ryu SE (2007). Crystal structure of the major diabetes autoantigen insulinoma-associated protein 2 reveals distinctive immune epitopes. *Diabetes*, **56**: 41-48.
- King DA, Hall BE, Iwamoto MA, Win KZ, Chang JF and Ellenberger T (2006). Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments. *J. Biol. Chem.*, **281**: 20107-20119.
- Kiss RS, Weers PM, Narayanaswami V, Cohen J, Kay CM and Ryan RO (2003). Structure-guided protein engineering modulates helix bundle exchangeable apolipoprotein properties. *J. Biol. Chem.*, **278**: 21952-21959
- Klepeis JL, Wei Y, Hecht MH and Floudas CA (2005). Ab initio prediction of the three-dimensional structure of a de novo designed protein: A double-blind case study. *Proteins*, **58**: 560-570.
- Ko J and Ma J (2005). A rapid and efficient PCR-based mutagenesis method applicable to cell physiology study. *Am. J. Physiol. Cell Physiol.*, **288**: 1273-1278.
- Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC and Norton RS (2006). Structure, dynamics and heparin binding of the C-

- terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J. Mol. Biol., 364: 690-704.
- Kurgan L (2008). On the relation between the predicted secondary structure and the protein size. *Protein J.*, **27**: 234-239.
- Lai JR, Koglin A and Walsh CT (2006). Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. *Biochem.*, **45**: 14869-14879.
- Lazar GA, Desjarlais JR and Handel TM (1997). *de novo* design of the hydrophobic core of ubiquitin. *Protein Sci.*, **6**(6): 1167-1178.
- Leuschner C and Antranikan G (1995). Heat stable enzymes from extremely thermophilic and hyperthermophilicmic microorganisms. *World J. Microbiol. Biotechnol.*, **11**: 95-114.
- Li S, Depetris RS, Barford D, Chernoff J and Hubbard SR (2005). Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. *Structure*, **13**: 1643-1651.
- Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS and Lyu PC (2007). Structure-based protein engineering for alphaamylase inhibitory activity of plant defensin. *Proteins*, **68**: 530-540.
- Lippincott-Schwartz J and Patterson GH (2003). Development and use of fluorescent protein markers in living cells. *Science*, **300**: 87-91.
- Liu H-L, Doleyres Y, Coutinho PM, Ford C and Reilly PJ (2000). Replacement and deletion mutations in the catalytic domain and belt region of *Aspergillus aeamori* glucoamylase to enhance thermostability. *Protein Eng.*, **13**(9): 655-659.
- Liu J, Li C, Ke S and Satyanarayanajois SD (2007). Structure-based rational design of beta-hairpin peptides from discontinuous epitopes of cluster of differenttiation 2 (CD2) protein to modulate cell adhesion interaction. J. Med. Chem., 50: 4038-4047.
- Ludwig K, Baljinnyam B, Herrmann A and Bottcher C (2003). The 3D structure of the fusion primed Sendai F-protein determined by electron cryomicroscopy. *EMBO J.*, **22**: 3761-3771.
- Mark S, Kubler B, Honing S, Oesterreicher S, John H, Braulke T, Forssmann WG and Standker L (2005). Diversity of human insulin-like growth factor (IGF) binding protein-2 fragments in plasma: Primary structure, IGF-binding properties, and disulfide bonding pattern. *Biochemistry*, **44**: 3644-3652.
- Matagne A, Lamotte-Brasseur J and Freare J-M (1998). Catalytic properties of class A b-lactamases: Efficiency and diversity. *J. Biochem.*, **330**: 581-598.
- Matsuura T and Pluckthun A (2004). Strategies for selection from protein libraries composed of de novo designed secondary structure modules. *Orig. Life Evol. Biosph.*, **34**: 151-157.
- Michel MF, Zenklusen F, Müller D, Muller B and Schumperli D (2000). Positive and negative mutant selection in the human histone hairpin-binding protein

- using the yeast three-hybrid system. *Nucleic Acids Research*, pp.1594-1603.
- Milik M, Szalma S and Olszewski KA (2003). Common Structural Cliques: a tool for protein structure and function Analysis. *Protein Eng.*, **16**(8): 543-552.
- Mirzaei H, McBee JK, Watts J and Aebersold R (2008). Comparative evaluation of current peptide production plat forms used in absolute quantification in Proteomics. *Mol. Cell Proteomics*, **7**(4): 813-823.
- Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A and Yamada M (2003). Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. *J. Hum. Genet.*, **48**: 410-414
- Molina R, Gonzalez A, Stelter M, Perez-Dorado I, Kahn R, Morales M, Moscoso M, Campuzano S, Campillo NE, Mobashery S, Garcia JL, Garcia P and Hermoso JA (2009). Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae. *EMBO Rep.*, **10**: 246-251.
- Moore JP and Sweet RW (1993). The HIV gp120-CD4 interaction: A target for pharmacological or immunological intervention? *Perspect. Drug Discov.*, **1**: 235-250.
- Moss AJ, Sharma S and Brindle NPJ (2009). Bionanotechnology II: From biomolecular assembly to applications rational design and protein engineering of growth factors for regenerative medicine and tissue engineering. *Biochem. Soc. Trans.*, 37: 717-721.
- Muirhead H and Perutz M (1963). Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 A resolution. *Nature*, **199**(4894): 633-638.
- Muller RH and Keck CM (2004). Challenges and solutions for the delivery of biotech drugs a review of drug nanocrystal technology and lipid nanoparticles. *J. Biotechnol.*, **113**: 151-170.
- Munson M, O'Brien R, Sturtevant JM and Regan L (1994). Redesigning the hydrophobic core of a four-helix-bundle protein. *Protein Sci.*, **3**(11): 2015-2022.
- Nicolini C and Pechkova E (2006). Structure and growth of ultrasmall protein microcrystals by synchrotron radiation: I. microGISAXS and microdiffraction of P450scc. *J. Cell. Biochem.*, **97**: 544-552.
- Nielsen FS, Sauer J, Backlund J, Voldborg B, Gregorius K, Mouritsen S and Bratt T (2004). Insertion of foreign T cell epitopes in human tumor necrosis factor alpha with minimal effect on protein structure and biological activity. *J. Biol. Chem.*, **279**: 33593-33600.
- Nielsen PK, Bonsager BC, Fukuda K and Svensson B (2004). Barley alpha-amylase/subtilisin inhibitor: Structure, biophysics and protein engineering. *Biochim. Biophys. Acta.*, **1696**: 157-164.
- Nishijima K (2005). Attitude of pharmaceutical company toward protein structure analysis. *Tanpakushitsu Kakusan Koso*, **50**: 862-868.

- O'Maille PE, Bakhtina M and Tsai MD (2002). Structure-based combinatorial protein engineering (SCOPE) *J. Mol. Biol.*, **321**: 677-691.
- O'Maille PE, Tsai MD, Greenhagen BT, Chappell J and Noel JP (2004). Gene library synthesis by structure-based combinatorial protein engineering. *Methods Enzymol.*, **388**: 75-91.
- Ostermeier M, Nixon AE, Shim J and Benkovic SJ (1999). Combinatorial protein engineering by incremental truncation. *Proc. Natl. Acad. Sci. USA.*, **96**: 3562-3567.
- Ozbek S, Engel J and Stetefeld J (2002). Storage function of cartilage oligomeric matrix protein: The crystal structure of the coiled-coil domain in complex with vitamin D(3). *EMBO J.*, **21**: 5960-5968.
- Parker JS, Roe SM and Barford D (2004). Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. *EMBO J.*, **23**: 4727-4737.
- Paul S, Gabibov A and Massey R (1994). Catalytic Antibodies "Conference Overview". *Mol. Biotechnol.*, **1**: 109-111.
- Pechkova E and Nicolini C (2006). Structure and growth of ultrasmall protein microcrystals by synchrotron radiation: II. microGISAX and microscopy of lysozyme. *J. Cell Biochem.*, **97**: 553-560.
- Platt OS and Falcone JF (1988). Membrane Protein Lesions in Erythrocytes with Heinz Bodies *J. Clin. Invest.*, **82**:1051-1058.
- Poza M, Sestelo AB, Ageitos JM, Vallejo JA, Veiga-Crespo P and Villa TG (2007). Cloning and expression of the XPR2 gene from *Yarrowia lipolytica* in *Pichia pastoris*. *J. Agric. Food Chem.*, **55**: 3944-3948.
- Procopiou A, Allinson NM, Jones GR and Clarke DT (2004). Estimation of protein secondary structure from synchrotron radiation circular dichroism spectra. *Conf. Proc. IEEE Eng. Med. Biol. Soc.*, **4**: 2893-2896.
- Qabar M, Urban J, Sia C, Klein M and Kahn M (1996). Pharmaceutical applications of peptidomimetics. *Lett. Pept. Sci.*, **3**: 25-30.
- Quine JR, Cross TA, Chapman MS and Bertram R (2004). Mathematical aspects of protein structure determination with NMR orientational restraints. *Bull. Math. Biol.*, **66**: 1705-1730.
- Rao M, Tankasale A, Ghatge M and Desphande V (1998). Molecular and biotechnological aspects of microbial proteases. *Microbiol. Mol. Biol. Rev.*, **62**: 597-634.
- Rehm BHA, Antonio RV, Spiekermann P, Amara AA and Steinbüchel A (2002). Molecular characterization of the poly (3-hydroxybutyrate) (PHB) synthase from *Ralstonia eutropha: in vitro* evolution, site-specific mutagenesis and development of a PHB synthase protein model. *Biochim. Biophys. Acta.*, **1594**: 178-190
- Rubingh DN (1996a). Engineering proteases with improved properties for detergents. *In*: Enzyme Technology for industrial Applications Edited by

- Savage L. Southborough MA: IBC Biomedical Library Series, pp.98-123
- Rubingh DN (1996b). The influence of sutfactants on enzyme activity. *Curr. Opin. Colfoid. Interface Sci.*, **1**: 598-603.
- Runbingh DN (1997). Protein Engineering from a bioindustrial point of view. *Curr. Opin. Biotechnol.*, **8**: 417-422.
- Sala A, Capaldi S, Campagnoli M, Faggion B, Labo S, Perduca M, Romano A, Carrizo ME, Valli M, Visai L, Minchiotti L, Galliano M and Monaco HL (2005). Structure and properties of the C-terminal domain of insulin-like growth factor-binding protein-1 isolated from human amniotic fluid. *J. Biol. Chem.*, 280: 29812-29819.
- Sanger F and Thompson EO (1953a). The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates *Biochem. J.*, **53**(3): 353-366.
- Sanger F and Thompson EO (1953b). The amino-acid sequence in the glycyl chain of insulin. II. The investigation of peptides from enzymic hydrolysates. *Biochem. J.*, **53**(3): 366-374.
- Satyanarayana T, Raghukumar C and Shivaji S (2005). Extremophilic microbes: Diversity and perspectives. *Current Science*, **89**(1): 78-90.
- Schäfer T, Kirk O, Borchert TV, Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R and Lund H (2005). Enzymes for technical applications. *In*: Biopolymers,eds Fahnestock SR and Steinbüchel A, Wiley VCH (Editor), Chapter 13, pp.377-437.
- Scheraga HA (1985). Effect of side chain-backbone electrostatic interactions on the stability of a-helices *Proc. Natl. Acad. Sci. USA*, **82**: 5585-5587.
- Schmidt A, Dordick JS, Hauer B, Kiener A, Wubbolts M and Witholt B (2001). Industrial biocatalysis today and tomorrow. *Nature*, **409**: 258-268.
- Senesh G, Bushi D, Neta A and Yodfat O (2010). Compatibility of insulin Lispro, Aspart and Glulisine with the SoloTM MicroPump, a novel miniature insulin pump. *J. Diabetes Sci. Technol.*, **4**: 104-110.
- Severin K, Lee DH and Kennan AJ (1997). A synthetic peptide ligase. *Nature*, **389**(6652): 706-709.
- Shak S, Capon DJ, Hellmiss R, Marsters SA and Baker CL (1990). Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. *Proc. Natl. Acad. Sci. USA*, **87**: 9188-9192.
- Shen S, Hu G and Tuszynski JA (2007). Analysis of protein three-dimension structure using amino acids depths. *Protein J.*, **26**: 183-192.
- Shen Y-C, Wang X-H and Wang X-M (2006). High efficient mammalian expression and secretion of a functional humanized single-chain Fv/human interleukin-2 molecules *World J. Gastroenterol.*, **12**(24): 3859-3865.
- Shiga D, Nakane D, Inomata T, Masuda H, Oda M, Noda M, Uchiyama S, Fukui K, Takano Y, Nakamura H,

- Mizuno T and Tanaka T (2009). The effect of the side chain length of Asp and Glu on coordination structure of Cu²⁺ in a de novo designed protein. *Biopolymers*, **91**: 907-916.
- Sivasubramanian A, Sircar A, Chaudhury S and Gray JJ (2009). Toward high-resolution homology modeling of antibody Fv regions and application to antibodyantigen docking. *Proteins*, **74**(2): 497-514.
- Skelton NJ, Chen YM, Dubree N, Quan C, Jackson DY, Cochran A, Zobel K, Deshayes K, Baca M, Pisabarro MT and Lowman HB (2001). Structure-function analysis of a phage display-derived peptide that binds to insulin-like growth factor binding protein 1. *Biochem.*, **40**: 8487-8498.
- Standley DM, Kinjo AR, Kinoshita K and Nakamura H (2008). Protein structure databases with new web services for structural biology and biomedical research. *Brief. Bioinform.*, 9: 276-285.
- Stemmer WPC (1994). Rapid evolution of a protein *in vitro* by DNA shuffling. *Nature*, **370**: 389-391.
- Strausberg SL, Alexander PA, Gallagher DT, Gilliland GL, Barnett BL and Bryan PN (1995). Directed evolution of a subtilisin with calcium-independent stability. *Bio-Technol.*, **13**: 669-673.
- Sueda S, Islam MN and Kondo H (2004). Protein engineering of pyruvate carboxylase: Investigation on the function of acetyl-CoA and the quaternary structure. *Eur. J. Biochem.*, **271**: 1391-1400.
- Sugimoto I, Li Z, Yoshitome S, Ito S and Hashimoto E (2004). Mass-spectrometric identification of binding proteins of Mr 25,000 protein, a part of vitellogenin B1, detected in particulate fraction of *Xenopus laevis oocytes*. *Protein J.*, **23**: 467-473.
- Sumner JB (1926). The isolation and crystallization of the enzyme urease. preliminary paper *J. Biol. Chem.*, **69**: 435-441.
- Taguchi S, Maehara A, Takase K, Nakahara M, Nakamura H and Doi Y (2001). Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an *in vivo* assay system. *FEMS Microbiol. Lett.*, **198**(1): 65-71.
- Taguchi S, Nakamura H, Hiraishi T, Yamato I and Doi Y (2002). *In vitro* evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. *J. Biochem.* (Tokyo), **131**(6): 801-806.
- Takekiyo T, Takeda N, Isogai Y, Kato M and Taniguchi Y (2007). Pressure stability of the alpha-helix structure in a de novo designed protein (alpha-l-alpha)(2) studied by FTIR spectroscopy. *Biopolymers*, **85**: 185-188.
- Tandang MR, Atsuta N, Maruyama N, Adachi M and Utsumi S (2005). Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering. *J. Agric. Food Chem.*, **53**: 8736-8744.
- Tang M, Waring AJ and Hong M (2007). Trehaloseprotected lipid membranes for determining membrane

- protein structure and insertion. J. Magn. Reson., 184: 222-227.
- Tang XM, Lakay FM, Shen W, Shao WL, Fang HY, Prior BA, Wang ZX and Zhuge J (2004). Purification and characterisation of an alkaline protease used in tannery industry from *Bacillus licheniformis*. *Biotechnol*. *Lett.*, **26**: 1421-1424.
- Teixeira RJ, Silva VC, Gazolla HM, Cunha SB and Guimaraes MM (2002). The relationship between ovarian structure and serum insulin, insulin-like growth factor-I (IGF-I) and its binding protein (IGFBP-1 and IGFBP-3) levels in premature pubarche. *J. Pediatr. Endocrinol. Metab.*, **15**: 69-75.
- Thaa B, Zahn R, Matthey U, Kroneck PM, Burkle A and Fritz G (2008). The deletion of amino acids 114-121 in the TM1 domain of mouse prion protein stabilizes its conformation but does not affect the overall structure. *Biochim. Biophys. Acta.* **1783**: 1076-1084.
- Thangam EB and Rajkumar GS (2002). Purification and characterization of alkaline protease from *Alcaligenes faecalis*. *Biotechnol*. *Appl. Biochem.*, **35**:149-154.
- Thore S, Mauxion F, Seraphin B and Suck D (2003). X-ray structure and activity of the yeast Pop2 protein: A nuclease subunit of the mRNA deadenylase complex. *EMBO Rep.*, **4**: 1150-1155.
- Timsit Y, Allemand F, Chiaruttini C and Springer M (2006). Coexistence of two protein folding states in the crystal structure of ribosomal protein L20. *EMBO Rep.*, 7: 1013-1018.
- Tratschin JD, Miller IL and Carter BJ (1984). Geneticanalysis of adeno-associated virus-properties of deletion mutants constructed *in vitro* and evidence for an adeno-associated virus-replication function. *J. Virol.*, **51**: 611-619.
- Vajdos FF, Ultsch M, Schaffer ML, Deshayes KD, Liu J, Skelton NJ and de Vos AM (2001). Crystal structure of human insulin-like growth factor-1: Detergent binding inhibits binding protein interactions. *Biochem.*, 40: 11022-11029.
- Valer M (1975). Skin irritancy and sensitivity to laundry detergents containing proteolytic enzymes. Part II. Berufsdermatosen, **23**: 96-115.
- van den Burg B (2003). Extremophiles as a source for novel enzymes. *Curr. Opin. Microbiol.*, **6**: 213-218.
- Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P and Marco SD (2002). The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. *EMBO J.*, **21**: 4393-4401.
- Venkatachalam KV, Huang W, LaRocco M and Palzkil T (1994). Characterization of TEM-1 P-Lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidim. *J. Boil. Chem.*, **269**: 23444-43450.
- Visegràdy B. Than NG. Kilàr F. Sümegi B, Than GN and Bohn H. (2001). Homology modelling and molecular

- dynamics studies of human placental tissue protein 13 (galectine-13). *Protein Eng.*, **14**(11): 878-880.
- von-Hippel PH. Bear DG. Morgan WD and McSwiggen JA (1984). Protein-nucleic acid interactions in transcription: A molecular analysis. *Annu. Rev. Biochem.*, **53**: 389-416.
- Vorberg I, Chan K and Priola SA (2001). Deletion of beta-strand and alpha-helix secondary structure in normal prion protein inhibits formation of its protease-resistant isoform. *J. Virol.*, **75**: 10024-10032.
- Wan ZL, Huang K, Hu SQ, Whittaker J and Weiss MA (2008). The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition. *J. Biol. Chem.*, **283**: 21198-21210.
- Wang J, Feng J, Shi M, Qian L, Chen L, Yu M, Xu R, Shen B and Guo N (2008). De novo design of ErbB2 epitope targeting fusion protein stabilized by coiled coil structure. *Mol. Immunol.*, **45**: 106-116.
- Wang L, Schultz PG (2002). Expanding the genetic code. *Chem. Commun.* 1: 1-11.
- Weiss MA, Nakagawa SH, Jia W, Xu B, Hua QX, Chu YC, Wang RY and Katsoyannis PG (2002). Protein structure and the spandrels of San Marco: insulin's receptor-binding surface is buttressed by an invariant leucine essential for its stability. *Biochem.*, **41**: 809-819
- Whittingham JL, Havelund S and Jonassen I (1997). Crystal structure of a prolonged-acting insulin with albumin-binding properties. *Biochem* **36**: 2826-2831.
- Winter G, Fersht AR, Wilkinson AJ, Zoller M and Smith M (1982). Redesigning enzyme structure by sitedirected mutagenesis: Tyrosyl tRNA synthetase and ATP binding. *Nature*, 299(5885): 756-758.
- Woo EJ, Marshall J, Bauly J, Chen JG, Venis M, Napier RM and Pickersgill RW (2002). Crystal structure of auxin-binding protein 1 in complex with auxin. *EMBO J.*, **21**: 2877-2885.
- Woods VL, Jr. and Hamuro Y (2001). High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: Utility in pharmaceutical design. *J. Cell. Biochem. Suppl. Suppl.*, **37**: 89-98.
- Yan C, Wu F, Jernigan RL, Dobbs D and Honavar V (2008). Characterization of protein-protein interfaces. *Protein J.*, **27**: 59-70.
- Yang C, Salerno JC and Koretz JF (2005). NH2-terminal stabilization of small heat shock protein structure: A comparison of two NH2-terminal deletion mutants of alphaA-crystallin. *Mol. Vis.*, **11**: 641-647.
- Yang Y-R, Zhu H, Fang N, Liang X, Zhong C-Q, Tang X-F, Shen P and Tang B (2008). Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41. *FEBS Letters*, **582**: 2620-2626.
- Yao M, Zhou Y and Tanaka I (2006). LAFIRE: Software for automating the refinement process of protein-

- structure analysis. *Acta Crystallogr. D Biol. Crystallogr.*, **62**: 189-196.
- You L and Arnold FH (1994). Directed evolution of subtilisin E in *Bacillus subtilis* to enhance total activity in aqueous dimethylformamide. *Protein Eng.*, **9**: 77-83.
- Yu P, Jonker A and Gruber M (2009). Molecular basis of protein structure in proanthocyanidin and anthocyaninenhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: A novel approach. *Spectrochim Acta. A. Mol. Biomol. Spectrosc.*, **73**: 846-853.
- Yu P, McKinnon JJ, Christensen CR and Christensen DA (2004). Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: Comparison with other feed protein sources. *J. Agric. Food Chem.*, **52**: 7353-7361.

- Yuen CM and Liu DR (2007). Dissecting protein structure and function using directed evolution. *Nat. Methods*, **4**: 995-997.
- Yun M, Bronner CE, Park CG, Cha SS, Park HW and Endow SA (2003). Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. *EMBO J.*, **22**: 5382-5389.
- Zhao H and Arnold FH (1997). Optimization of DNA shuffling for high fidelity recombination. *Nucleic Acids Res.*, **25**(6): 1307-1308.
- Zou H, Strzalka J, Xu T, Tronin A and Blasie JK (2007). Three-dimensional structure and dynamics of a de novo designed, amphiphilic, metallo-porphyrin-binding protein maquette at soft interfaces by molecular dynamics simulations. J. Phys. Chem. B., 111: 1823-1833.